gpytorch.priors¶
Prior¶
- class gpytorch.priors.Prior(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)[source]¶
Base class for Priors in GPyTorch. In GPyTorch, a parameter can be assigned a prior by passing it as the prior argument to
register_parameter()
. GPyTorch performs internal bookkeeping of priors, and for each parameter with a registered prior includes the log probability of the parameter under its respective prior in computing the Marginal Log-Likelihood.
Standard Priors¶
GammaPrior¶
- class gpytorch.priors.GammaPrior(concentration, rate, validate_args=False, transform=None)[source]¶
Gamma Prior parameterized by concentration and rate
pdf(x) = beta^alpha / Gamma(alpha) * x^(alpha - 1) * exp(-beta * x)
were alpha > 0 and beta > 0 are the concentration and rate parameters, respectively.
HalfCauchyPrior¶
LKJCovariancePrior¶
- class gpytorch.priors.LKJCovariancePrior(n, eta, sd_prior, validate_args=False)[source]¶
LKJCovariancePrior combines an LKJ prior over the correlation matrix and a user-specified prior over marginal standard deviations to return a prior over the full covariance matrix.
- Usage: LKJCovariancePrior(n, eta, sd_prior), where
n is a positive integer, the size of the covariance matrix, eta is a positive shape parameter for the LKJPrior over correlations, and sd_prior is a scalar Prior over nonnegative numbers, which is used for each of the n marginal standard deviations on the covariance matrix.
MultivariateNormalPrior¶
- class gpytorch.priors.MultivariateNormalPrior(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=False, transform=None)[source]¶
Multivariate Normal prior
pdf(x) = det(2 * pi * Sigma)^-0.5 * exp(-0.5 * (x - mu)’ Sigma^-1 (x - mu))
where mu is the mean and Sigma > 0 is the covariance matrix.
NormalPrior¶
SmoothedBoxPrior¶
- class gpytorch.priors.SmoothedBoxPrior(a, b, sigma=0.01, validate_args=False, transform=None)[source]¶
A smoothed approximation of a uniform prior.
Has full support on the reals and is differentiable everywhere.
\[\begin{equation*} B = {x: a_i <= x_i <= b_i} d(x, B) = min_{x' in B} |x - x'| pdf(x) \sim exp(- d(x, B)**2 / sqrt(2 * sigma^2)) \end{equation*}\]