Tutorials:
Examples:
DataLoader
DSPPHiddenLayer
DSPP
Package Reference
ExactGP
ApproximateGP
DeepGP
DeepGPLayer
BayesianGPLVM
PointLatentVariable
MAPLatentVariable
VariationalLatentVariable
PyroGP
Likelihood
Likelihood.__call__()
Likelihood.expected_log_prob()
Likelihood.forward()
Likelihood.log_marginal()
Likelihood.marginal()
Likelihood.pyro_guide()
Likelihood.pyro_model()
GaussianLikelihood
GaussianLikelihoodWithMissingObs
FixedNoiseGaussianLikelihood
DirichletClassificationLikelihood
BernoulliLikelihood
BetaLikelihood
LaplaceLikelihood
StudentTLikelihood
MultitaskGaussianLikelihood
SoftmaxLikelihood
Kernel
Kernel.__call__()
Kernel.__getitem__()
Kernel.covar_dist()
Kernel.expand_batch()
Kernel.forward()
Kernel.named_sub_kernels()
Kernel.num_outputs_per_input()
Kernel.sub_kernels()
ConstantKernel
CosineKernel
CylindricalKernel
LinearKernel
MaternKernel
PeriodicKernel
PiecewisePolynomialKernel
PolynomialKernel
PolynomialKernelGrad
RBFKernel
RQKernel
SpectralDeltaKernel
SpectralMixtureKernel
AdditiveKernel
MultiDeviceKernel
AdditiveStructureKernel
ProductKernel
ProductStructureKernel
ScaleKernel
ArcKernel
IndexKernel
LCMKernel
MultitaskKernel
RBFKernelGrad
RBFKernelGradGrad
GridKernel
GridInterpolationKernel
InducingPointKernel
RFFKernel
Mean
ZeroMean
ConstantMean
LinearMean
MultitaskMean
ConstantMeanGrad
ConstantMeanGradGrad
LinearMeanGrad
LinearMeanGradGrad
ExactMarginalLogLikelihood
LeaveOneOutPseudoLikelihood
VariationalELBO
PredictiveLogLikelihood
GammaRobustVariationalELBO
DeepApproximateMLL
AddedLossTerm
AddedLossTerm.loss()
InducingPointKernelAddedLossTerm
KLGaussianAddedLossTerm
metrics.mean_absolute_error()
metrics.mean_squared_error()
metrics.mean_standardized_log_loss()
metrics.negative_log_predictive_density()
metrics.quantile_coverage_error()
Interval
GreaterThan
Positive
LessThan
Distribution
MultivariateNormal
MultivariateNormal.__getitem__()
MultivariateNormal.add_jitter()
MultivariateNormal.confidence_region()
MultivariateNormal.expand()
MultivariateNormal.get_base_samples()
MultivariateNormal.log_prob()
MultivariateNormal.rsample()
MultivariateNormal.sample()
MultivariateNormal.to_data_independent_dist()
MultitaskMultivariateNormal
MultitaskMultivariateNormal.__getitem__()
MultitaskMultivariateNormal.base_sample_shape
MultitaskMultivariateNormal.from_batch_mvn()
MultitaskMultivariateNormal.from_independent_mvns()
MultitaskMultivariateNormal.from_repeated_mvn()
MultitaskMultivariateNormal.to_data_independent_dist()
Delta
Prior
Prior.log_prob()
GammaPrior
HalfCauchyPrior
LKJCovariancePrior
MultivariateNormalPrior
NormalPrior
SmoothedBoxPrior
_VariationalStrategy
VariationalStrategy
BatchDecoupledVariationalStrategy
CiqVariationalStrategy
NNVariationalStrategy
OrthogonallyDecoupledVariationalStrategy
UnwhitenedVariationalStrategy
GridInterpolationVariationalStrategy
LMCVariationalStrategy
IndependentMultitaskVariationalStrategy
_VariationalDistribution
CholeskyVariationalDistribution
DeltaVariationalDistribution
MeanFieldVariationalDistribution
NaturalVariationalDistribution
TrilNaturalVariationalDistribution
NGD
NGD.step()
Settings and Beta Features
cg_tolerance
cholesky_jitter
cholesky_max_tries
ciq_samples
debug
detach_test_caches
deterministic_probes
eval_cg_tolerance
fast_computations
fast_computations.covar_root_decomposition
fast_computations.log_prob
fast_computations.solves
fast_pred_samples
fast_pred_var
lazily_evaluate_kernels
linalg_dtypes
max_cg_iterations
max_cholesky_size
max_eager_kernel_size
max_lanczos_quadrature_iterations
max_preconditioner_size
max_root_decomposition_size
memory_efficient
min_preconditioning_size
min_variance
minres_tolerance
num_contour_quadrature
num_gauss_hermite_locs
num_likelihood_samples
num_trace_samples
observation_nan_policy
preconditioner_tolerance
prior_mode
sgpr_diagonal_correction
skip_logdet_forward
skip_posterior_variances
terminate_cg_by_size
trace_mode
tridiagonal_jitter
use_keops
use_toeplitz
variational_cholesky_jitter
verbose_linalg
checkpoint_kernel
default_preconditioner
Advanced Package Reference
Module
Module.initialize()
Module.local_load_samples()
Module.named_added_loss_terms()
Module.named_priors()
Module.pyro_load_from_samples()
Module.pyro_sample_from_prior()
Module.register_parameter()
Module.register_prior()
Module.sample_from_prior()
add_diagonal()
add_jitter()
dsmm()
diagonalization()
inv_quad()
inv_quad_logdet()
pivoted_cholesky()
root_decomposition()
root_inv_decomposition()
solve()
sqrt_inv_matmul()
NNUtil
NNUtil.build_sequential_nn_idx()
NNUtil.find_nn_idx()
NNUtil.set_nn_idx()
NNUtil.to()
cached()
sum_interaction_terms()
ScaleToBounds
choose_grid_size()
create_data_from_grid()
create_grid()
scale_to_bounds()
GaussHermiteQuadrature1D
GaussHermiteQuadrature1D.forward()